A derivative-Hilbert operator acting on Dirichlet spaces
نویسندگان
چکیده
Abstract Let μ \mu be a positive Borel measure on the interval [ 0 , 1 ) \left[0,1) . The Hankel matrix H = ( n k ≥ {{\mathcal{ {\mathcal H} }}}_{\mu }={\left({\mu }_{n,k})}_{n,k\ge 0} with entries + {\mu }_{n,k}={\mu }_{n+k} , where ∫ t mathvariant="normal">d }_{n}={\int }_{\left[0,1)}{t}^{n}{\rm{d}}\mu \left(t) induces formally operator as follows: xmlns:m="http://www.w3.org/1998/Math/MathML" display="block"> mathvariant="script">DH f z ∑ ∞ a ∈ mathvariant="double-struck">D {{\mathcal{D }(f)\left(z)=\mathop{\sum }\limits_{n=0}^{\infty }\left(\mathop{\sum }\limits_{k=0}^{\infty }{\mu }_{n,k}{a}_{k}\right)\left(n+1){z}^{n},\hspace{1em}z\in {\mathbb{D}}, f\left(z)={\sum }_{n=0}^{\infty }{a}_{n}{z}^{n} is an analytic function in {\mathbb{D}} In this article, we characterize those measures for which } bounded (resp. compact) from Dirichlet spaces mathvariant="script">D α width="0.33em" < ≤ 2 {{\mathcal{D}}}_{\alpha }\hspace{0.33em}\left(0\lt \alpha \le 2) into β 4 {{\mathcal{D}}}_{\beta }\hspace{0.33em}\left(2\le \beta \lt 4)
منابع مشابه
The Libera operator on Dirichlet spaces
In this paper, we consider the boundedness of the Libera operator on Dirichlet spaces in terms of the Schur test. Moreover, we get its point spectrum and norm.
متن کاملOperator-valued bases on Hilbert spaces
In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual ov-basis are continuous. We also dene the concepts of Bessel, Hilbert ov-basis and obta...
متن کاملComposition operators acting on weighted Hilbert spaces of analytic functions
In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators are investigated.
متن کاملthe libera operator on dirichlet spaces
in this paper, we consider the boundedness of the libera operator on dirichlet spaces in terms of the schur test. moreover, we get its point spectrum and norm.
متن کاملHilbert Spaces of Dirichlet Series
We consider various Hilbert spaces of Dirichlet series whose norms are given by weighted l2 norms of the Dirichlet coefficients. We characterize the multiplier algebras for some of these spaces. 0 Introduction Let w = {wn}n=n0 be a sequence of positive numbers. In this paper we are concerned with Hilbert spaces of functions representable by Dirichlet series: H w = {
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Mathematics
سال: 2023
ISSN: ['2391-5455']
DOI: https://doi.org/10.1515/math-2022-0559