A derivative-Hilbert operator acting on Dirichlet spaces

نویسندگان

چکیده

Abstract Let μ \mu be a positive Borel measure on the interval [ 0 , 1 ) \left[0,1) . The Hankel matrix H = ( n k ≥ {{\mathcal{ {\mathcal H} }}}_{\mu }={\left({\mu }_{n,k})}_{n,k\ge 0} with entries + {\mu }_{n,k}={\mu }_{n+k} , where ∫ t mathvariant="normal">d }_{n}={\int }_{\left[0,1)}{t}^{n}{\rm{d}}\mu \left(t) induces formally operator as follows: xmlns:m="http://www.w3.org/1998/Math/MathML" display="block"> mathvariant="script">DH f z ∑ ∞ a ∈ mathvariant="double-struck">D {{\mathcal{D }(f)\left(z)=\mathop{\sum }\limits_{n=0}^{\infty }\left(\mathop{\sum }\limits_{k=0}^{\infty }{\mu }_{n,k}{a}_{k}\right)\left(n+1){z}^{n},\hspace{1em}z\in {\mathbb{D}}, f\left(z)={\sum }_{n=0}^{\infty }{a}_{n}{z}^{n} is an analytic function in {\mathbb{D}} In this article, we characterize those measures for which } bounded (resp. compact) from Dirichlet spaces mathvariant="script">D α width="0.33em" < ≤ 2 {{\mathcal{D}}}_{\alpha }\hspace{0.33em}\left(0\lt \alpha \le 2) into β 4 {{\mathcal{D}}}_{\beta }\hspace{0.33em}\left(2\le \beta \lt 4)

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Libera operator on Dirichlet spaces

In this paper, we consider the boundedness of the Libera operator on Dirichlet spaces in terms of the Schur test. Moreover, we get its point spectrum and norm.

متن کامل

Operator-valued bases on Hilbert spaces

In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual ov-basis are continuous. We also dene the concepts of Bessel, Hilbert ov-basis and obta...

متن کامل

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

the libera operator on dirichlet spaces

in this paper, we consider the boundedness of the libera operator on dirichlet spaces in terms of the schur test. moreover, we get its point spectrum and norm.

متن کامل

Hilbert Spaces of Dirichlet Series

We consider various Hilbert spaces of Dirichlet series whose norms are given by weighted l2 norms of the Dirichlet coefficients. We characterize the multiplier algebras for some of these spaces. 0 Introduction Let w = {wn}n=n0 be a sequence of positive numbers. In this paper we are concerned with Hilbert spaces of functions representable by Dirichlet series: H w = {

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Mathematics

سال: 2023

ISSN: ['2391-5455']

DOI: https://doi.org/10.1515/math-2022-0559